United Kingdom

Brain implants could restore a rudimentary form of vision in the blind 

A technological breakthrough tested in monkeys reveals people who have gone blind due to injury or disease may soon be able to regain their vision. 

The technique involves implanting electrodes in the monkeys' brains to produce dots of light, according to a study published this week by experts in the Netherlands.

These dots, known as phosphenes, work in the same way as pixels on a television, each forming a small part of a bigger picture. 

The patterns are still crude compared to real vision, and the technology has not yet been tested in humans, but is brings researchers a step closer to the eventual goal of allowing blind people to regain their sight. 

This graphic shows how a normal person sees (left), how the new technology works (middle) and how the tech might be integrated in the future to restore vision in the blind (right)

Researchers hope that one day the technology could be used to create technology similar to the visor device worn by Geordi La Forge on 'Star Trek: The Next Generation' (pictured)

It builds on an idea first conceived decades ago: electrically stimulating the brain so it 'sees' via so-called phosphene dots.   

Previous attempts to turn this theory into a reality had only limited success, mainly due to limitations of the technology available at the time. 

NIN director Pieter Roelfsema developed implants consisting of 1,024 electrodes wired into the visual cortexes of two sighted monkeys. 

'Our implant interfaces directly with the brain, bypassing prior stages of visual processing via the eye or the optic nerve,' explains Xing Chen, a postdoctoral researcher involved in the research.

'Hence, in the future, such technology could be used for the restoration of low vision in blind people who have suffered injury or degeneration of the retina, eye, or optic nerve, but whose visual cortex remains intact.'

The visual cortex is located at the back of the brain and many of its features are common to humans and other primates.

'The number of electrodes that we have implanted in the visual cortex, and the number of artificial pixels that we can generate to produce high-resolution artificial images, is unprecedented,' said Dr Roelfsema.

This allowed the pair of monkeys to make out shapes like letters of the alphabet, lines and moving dots, which they'd previously been trained to respond to by moving their eyes in a particular direction to win a reward.

While the patterns are crude, they represent a significant advancement over previous implants, which allowed users to only determine vague areas of light and dark.

Dr Roelfsema said the 'proof of principle' study could one day be turned into a real device which could help some of the world's 40 million blind people. One possible mechanism could be a camera fitted to a pair of glasses and in-built AI to convert the scene into a pattern that is sent to the user's brain (stock)

Scientists prepare human trials of 'bionic eye' 

It has been more than 10 years in the making, but scientists are preparing to implant a 'bionic eye' in a human subject.

Researchers at Monash University have developed wireless implants that sit on the surface of the brain, which are said to restore vision to the blind.

Called Gennaris bionic vision system, it includes a custom headgear fitted with a camera and wireless transmitter, a vision processor unit and software and a set of 9x9 millimeter tiles that are implanted into the brain. 

Studies of the device, used in sheep, were found to be successful and did not produce any adverse health effects.

The team is currently seeking funding to ramp up manufacturing and distribution of the implant, which they say could soon be used to cure other ailments including paralysis.

The Australian scientists are just one of many working towards connecting the brain to a computer, as Elon Musk has also been designing a chip that he demonstrated in pigs recently.     

Dr Roelfsema said the 'proof of principle' study could one day be turned into a real device which could help some of the world's 40 million blind people. 

One possible mechanism could be a camera fitted to a pair of glasses and in-built AI to convert the scene into a pattern that is sent to the user's brain.

Similar technology has appeared in works of science fiction, such as the visor device worn by Geordi La Forge on 'Star Trek: The Next Generation.'

In a written commentary, Michael Beauchamp and Daniel Yoshor of the University of Pennsylvania hailed the breakthrough as a 'technical tour de force.'

Dr Roelfsema said his team hopes to make similar devices for humans in about three years.

But the electrodes the team used require silicon needles that work for about a year before tissue builds up around the needles and they no longer function.

'So we want to create new types of electrodes that are better accepted by the body,' he said.

A wireless solution would be best, as it would mean the user wouldn't need to wear an implant on the back of their skull, which requires scientists to operate and puts the user at risk of infection.

Fortunately, wireless devices that interface with the brain are advancing rapidly.

The prosthetics would only be suitable for people who once had sight and then lost it owing to disease or injury.

The brains of people who are born blind dedicate the visual cortex to other functions. But in people whose eyes stop working, the brain region remains idle, waiting for an input that never comes. 

Football news:

Klopp on hugs: If it was a threat to the players' health, we wouldn't do it. The pitch is a safe place
Mourinho to Bale in training: Do you want to stay here or go back to Real Madrid and not play football?
Paul Pogba: The match against Liverpool will be a battle. Manchester United need to keep calm
Roten on Mbappe: He's getting worse with his teammates. When Kylian is successful, he is like Ronaldo
Lampard 1-0 with Fulham: Chelsea pressed, and there was a feeling that we would score. It was important to be patient
Alex Ferguson: Manchester United - Liverpool-the main game of the season, I always thought so. These are two of the most successful clubs in Britain
Koeman on the Super Cup: It's not the most important trophy we're fighting for, but it's still a title. We need to show that we are in the ranks